1、電商數據分析是什麼
電商數據分析包括了大行業大平台的數據狀況,也可以是小到店鋪、單品、sku的某個某個維度詳細數據分析。
除了常規的商品型號、商品價格、促銷信息、店鋪名稱等,還可以自定義其他維度、可以說說是做到了全方位展現渠道違規行為,滿足多樣化的巡檢場景需求。
從流量、訂單、總體銷售業績、整體指標進行把控,起碼對運營的電商平台有個大致了解,到底運營的怎麼樣,是虧是賺。
電商分析數據方法如下:
一、依據用戶畫像,洞察需求
用戶畫像即用戶信息標簽化,通過收集用戶的社會屬性、消費習慣、偏好特徵等各個維度的數據,進而對用戶或產品特徵屬性進行刻畫,並對這些特徵進行分析、統計,挖掘潛在價值信息,從而抽象出用戶的信息全貌。
二、依據渠道數據分析用戶來源
對電商賣家來說,分析「訪客數」最重要的是分析「流量來源」。分析不同流量來源的「數量」和「支付轉化率」,找出「支付轉化率」比較高的流量來源並想辦法提高,不僅可以提高「訪客數」還可以提高整體的「支付轉化率」。
這時利用數據分析工具能為不同渠道的表現提供總覽,並給出目標轉化率。當涉及到有機搜索時,分析一些像搜索量和關鍵詞排名的指標能幫你獲得更多的見解,比如該將廣告預算花在哪兒,如何讓用戶更容易搜索到你等等。
三、店內轉化率的數據分析
當用戶來到店鋪時,我們就要想辦法將他們轉化成顧客,但眾所周知,並不是每個來店裡的用戶都會點加入購物車按鈕。甚至在加入購物車後,也會有改變主意離開網站的可能。所以這一步我們可以用下面的電商轉化指標來跟蹤和優化線上購物體驗:
1、銷售轉化率 ——已購買的用戶和全部來到店鋪的用戶比值。
2、平均訂單價值 —— 用戶下單的平均金額。
3、放棄購物車率—— 在所有產生的訂單中,未完成訂單的佔比。
四、提高營銷推廣的ROI
對店鋪來說,如今流量已進入存量時代,營銷渠道分散且復雜,更需要賣家依據數字化營銷提高推廣的RIO,通過數據分析,加強線上營銷的精準,拓展線下新的營銷場景,利用數據智能完成全場景全鏈路的布局,以達到高效轉化與品效相結合。
五、產品數據分析
1、產品數據分分析
①整體分析:分為兩個部分:銷售表現和購物行為。銷售表現包括各個商品帶來的收入,至少購買過一次的用戶數,平均訂單價格、數量,退款數目等等。購物行為,你可以看到瀏覽了產品詳情頁的用戶里,加入購物車的人數;或瀏覽產品詳情頁後最終下單的人數。
②購物行為分析——我們可以依據更多和商品有關的數據,比如商品瀏覽頁訪問量、商品詳情頁訪問量、加入/移出購物車的商品,進入結算階段的商品,以及購買人數來對用戶購物行為進行分析。
2、銷量數據分析
我們可以從後台數據分析中找到關於收入,稅費、運費、退款金額,和賣出的商品數量。其中,總銷售額以金額的形式呈現,是衡量我們線上店鋪經營狀況最佳的「整體主要指標」(OMM)之一,可以用它來衡量業務的整體增長和發展趨勢。
六、用戶留存數據分析
聰明的商家知道忠誠顧客的價值。能夠留住用戶給你長期帶來收入。永遠要記住的是,獲取新用戶比留住老用戶成本大得多。研究顯示,用戶留存率提升5%就能帶來25%到95%的利潤。
七、用戶推薦數據分析
對賣家來說,我們要識別出哪些用戶是你的真愛。他們不僅愛你的產品,也願意向家人和朋友推薦,他們簡直是你的品牌大使。成功的電商企業會密切關注著這一階段的指標並及時做出反應。
2、電商數據分析
電商分析的過程大致是從線上店鋪的各個方面獲取數據,利用任何可能對銷售有影響的信息,理解當前趨勢和消費者行為的轉變,做出數據驅動的決策來提升更多的線上銷售額。電商分析會使用到和整個用戶路徑相關的指標,從發現到獲取、轉化、留存以及推薦。
如今,消費者比以往擁有了更多選擇和控制權,選擇過多從而導致更高的期待。作為店鋪,需要更快速地提升競爭力來跟上加速增長的期待值,因此通過數據掌握消費者喜好和厭惡的信息,並在產品開發過程中利用這些知識,是創造出消費者喜愛的產品的關鍵。
在電商領域,面對需求,「一刀切」是行不通的。當品牌提供個性化體驗時,80%的消費者更有可能進行購買,90%的消費者表示他們覺得個性化很有吸引力。新世界的規則里,個性化遠遠不止是簡單地分類定製,而使用電商數據分析,能夠預測消費者個體的需求,並提出相關的產品建議。
如今 ,客戶體驗是新的「品牌通貨」。除了價格和質量,我們還需要提供吸引人的用戶體驗來保持客戶的興趣。而通過數據分析,我們可以看到客戶在網站上花費了多少時間,哪些特性吸引了他們的注意力,以及可以改進哪些方面來創建獨特、有趣、簡單、無障礙的用戶體驗,以滿足客戶不斷變化的需求。
3、電商公司如何進行數據分析?
一般而言,電子商務網站數據分析包括了流量來源的分析及流量效率的分析,還有網站內部數據流的分析,用戶特徵分析這四個部分。
首先,電商網站若是想接到單子,肯定要保證流量。可是獲取流量是需要成本的,怎麼樣才能降低流量成本屬於電商網站運營最重要的一個部分,其中流量來源分空蘆析屬於重點,如在對電商網站進行數據分析的時候,要先明白用戶都是從哪裡點擊過來的,哪些網站可謂我們帶來更多的訂單,哪些流量來源是真實的,哪些屬於虛假的等等。弄清楚這些之後,才能穩定老客戶,發展新客戶,將網站推廣得更好。_塘月色論壇
其次,流量效率分析也是必不可少的一部分,在進行電商網站數據分析的時候流量效率指的是流量達到了網站是否屬於真實的流量。那麼,在具體分析的時候,要看下它的到達率,PV/IP比還有就是訂單轉化率等等。其中訂單轉化率是最重要的一方面,若沒有訂單轉換了一切都沒意義。
最後,怎樣則渣進行孫虧悄電商網站數據分析也離不開站內數據流量分析這個方面。這里所說的站內數據流的分析,主要是用於分析購物流程順暢程度及網站產品分布合理與否等等,然後再根據這些來分析頁面流量排名及場景轉化率分析,站內搜索分析及客戶為何離開頁面分析等問題的分析等等,查看問題所在,然後想辦法解決,才能讓網站產品得到更好的推廣。